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Abstract. A W *  system (A, G, a) consists of a W* algebra A (the ‘algebra of observables’), 
a kinematical (locally compact, separable) group G and a representation a of G by 
automorphisms of 1. Ergodic W* systems are used in algebraic quantum mechanics to 
describe elementary physical systems. An ergodic W* system is integrable in the sense of 
Connes and Takesaki if i t  admits ‘observables’, i.e. operators which transform ‘suitably’ 
under the action a. Elementary quantum systems, corresponding to irreducible ray rep- 
resentations of G on a Hilbert space, and elementary classical systems, corresponding to 
transitive representations of G on a phase space, fit into this scheme. This letter investigates 
the structure of integrable ergodic W* systems, in particular those of Abelian groups and 
those whose underlying W* algebra is of type I .  

Group-theoretical methods have played an important role in quantum mechanics from 
its early days (cf [l-61). In particular, the structural understanding of the quantum 
mechanical formalism has profitted much from results such as von Neumann’s unique- 
ness theorem ([7], theorem VIII.14), the investigation of representations of the rotation 
([6], 1V.6), the Lorentz [2] and the Galilei group [4]. 

To a large extent, group-theoretical methods can also be applied to classical 
mechanics [8,9]. In a similar way one can characterise systems or particular physical 
quantities and gain insight into structural problems. 

At first sight, the ingredients of quantum and classical theories are entirely different. 
For example, in quantum mechanics states are given by rays in a Hilbert space; in 
classical mechanics they correspond to points of a manifold (the phase space). 
Nevertheless, a closer inspection reveals that there are similarities and that a common 
structural setting can be found. In both cases physical quantities (‘observables’) are 
described by elements of an algebra, the algebra a(%’) of bounded linear operators 
on a Hilbert space %’ or the algebra YW(fl) of functions on the underlying manifold 
a. Group representations on the Hilbert space or on the manifold can be replaced 
by representations on the associated algebras through symmetries (automorphisms): 
If U : G 3 g + u(g) E Q ( X )  is a unitary ray representation of the group G or s : G 3 g -+ sg,  
sg:f2+fl is a representation of G (e.g. the Galilei group) on the manifold fl, the 
associated representations {crglq E G} by automorphisms of Q( X) and zm(fl), respec- 
tively, are given by 
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Instead of studying group representations on a Hilbert space or on a manifold, 
one can now operate on a higher level: the investigation of group representations 
acting through automorphisms on algebras incorporates both classical and quantum 
theories among other things. Within the algebraic frame, systems with both quantum 
and classical properties or infinite systems can be described. 

Of course, the development of group-theoretical methods in this extended form 
presents new difficulties, which have been only partially solved (cf [lo-161) with the 
help of mathematical techniques introduced in the last two decades. 

In the following we restrict ourselves to a particular class of algebras, namely W* 
algebras. This class is large enough to comprehend the algebras a ( X )  and %(a) 
introduced above for quantum and classical mechanics. 

A W* algebra is a * algebra which is * isomorphic to a * algebra 3 c B(2)  of 
operators on a Hilbert space X fulfilling 3 = (3’)‘ (i.e. a von Neumann algebra). Here 
the commutant Y’ of a set Y of operators on X is defined as 

def 
Y’ = { x E a ( X ) J X y = y x , V y E Y } .  

If W* algebras A,, i = 1 ,2 ,  are * isomorphic, this is denoted by A, = A2. 
Every W* algebra A contains a unit element 1. A state w on a W* algebra A is 

a positive, linear, normalised (w(1)  = 1 )  mapping w : A -f C. A state w is normal or 
a-weakly continuous if supp w ( x p )  = w(supp x p )  holds for every bounded increasing 
net ( x ~ ) ~ ~ ,  of positive operators of A ( I  denotes an index set, sup the supremum). 

The elements of Zm(R) d~f2m(0, p )  are classes of essentially bounded Bore1 
measurable complex-valued functions on 0, essentially bounded with respect to a 
measure p ;  for example, the Liouville measure. Two functions belong to the same 
class if they differ only on a p-null set. 

The centre %(A) of a W* algebra A, defined as %(A) ’sf A fl A‘ contains the 
classical properties of the respective system. A is a factor if %(A) = C - 1. Factors 
describe purely quantum mechanical systems (e.g. A = a( 2)). Commutative algebras 
(where A = %( A) holds, e.g. A = LL(0)) describe purely classical systems. 

A triple (A, G, a ) ,  consisting of a W* algebra A, a locally compact (kinematical) 
group G and a continuous representation a : G + Aut A of G into the automorphism 
group Aut A of A, is called a W* system. Here continuity means that the mappings 
G 3 g +. +( a , ( x ) )  E C are continuous for every x E A and every normal state + on A. 
Two W* systems (A,, G, a, ) ,  i = 1,2, are called conjugate, (A,, G, a , )  = (A2,  G, a2), 
if there exists a * isomorphism J : A, + Az, such that aZg 0 J = J 0 a l g ,  g E G, holds. 

The locally compact group G will be assumed to be second countable and the W* 
algebra A will be supposed to have a separable predual (,U can then be faithfully 
represented on a separable Hilbert space). 

A W* system (A, G, a )  is called ergodic if a , ( x )  = x, Vg E G, implies x = c .  1, 
c E C. The W* system ( B ( X ) ,  G ,  {a,( ) = u(g) . u(g)*lg E G } )  is ergodic if and only 
if U is irreducible ([17], theorem 67.2). Furthermore, a W* system implemented by a 
transitive phase-space representation is ergodic. Since ‘irreducible’ (cf [ 181) and 
‘transitive’ [8, 191 are the critieria for elementary quantum and classical systems, ergodic 
W* systems can be regarded as elementary systems. 

A W* system (A, G, a )  is called integrable if the set {x E AI jG a , ( x * x )  dg < CO} is 
a-weakly dense in .dl [20]. IC a , ( x * x )  d g < a  means that there is a Y E  A such that 
+ ( y )  =IG + ( a , ( x * x ) )  dg holds for all normal states + on A. Here dg  denotes the left 
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Haar measure on G. W* systems of a compact group are automatically integrable. 
The W* system ( B ( X ) ,  G, {a8( ) = u ( g )  * u(g)*)gEG}) is integrable if and only if 
the irreducible ray representation U is square integrable (cf [21]). 

Ever group G acts naturally (‘from the left’ or ‘from the right’) on the W* algebra 
%(G) = Z A G ,  dg):  

2f 

(Ad A(glf)(s) zff(g-’s) s , g E G  

(Ad p(g)f)(s)  %sg) s , g e G  

where (ZJG), G, Ad A )  and (%(G), G, Ad p )  are W* systems. 
An ergodic W* system (A, G, a )  is integrable if and only if there exists a positive, 

linear, normal mapping x : LZ”(G) + A with ag 0 x = x 0 Ad A ( g ) ,  g E G [22] ( x  is normal 
if i,b o x  is a normal state on 2=(G)  for every normal state i,b on A). Such a mapping 
(which is essentially a covariant semispectral measure, cf [23]) describes ‘observables’ 
in a system, defined as operators in A, which transform ‘suitably’ under the representa- 
tion a, i.e. just as a function f on G under Ad A [22]. 

This concept of observables can be defined with respect to arbitrary (locally 
compact) groups G. If G is the Galilei group, observables are, for example, position, 
momentum, spin, etc. If G = Rz (used in von Neumann’s uniqueness theorem), which 
can be regarded as a caricature of the Galilei group, integrability of an ergodic W* 
system (A, R2, a )  is equivalent to the existence of (unbounded) operators Q and P, 
‘position’ and ‘momentum’ (affiliated with A), such that 

a , a , b ) ( Q )  = 0 - a  * 1 

a(,,h)( P )  = P - b .  1 U,  b E R. 

To summarise, ergodic integrable W* systems describe elementary physical systems 

Now consider a W* system (9, H, y )  of a closed subgroup H of G. The induced 
with observables. 

W* system (A, G, a )  = Ind${9, y} is defined by 

def 
A = { y E .Lt”(G) @ %)(Ad p(  h )  0 y h ) (  y )  = y, V h  E H} 

a , ( y )  z(Ad A(g)OId)(y)  y E A, g E G. 

Here 0 denotes the W* tensor product. Id is the identity mapping on 9 and 
Ad A(g)OId denotes the tensor product mapping of Ad A(g) and Id. We now have 
the following theorem [24]. 

Theorem 1. Let (A, G, a )  be an integrable ergodic W* system. Then there exist a 
closed subgroup H of G, a factor 9 and an integrable ergodic representation y of H 
on 9 with (A, G, a ) -  Indi{9,  y}. In particular, one has: A =%(G/H)@9,  (T (A) ,  
G ,  al%(A)) -  (%(G/H), G, Ad A G I H ) .  Here G/H is the space of left cosets of H in 
G.  Zm(G/H)  is defined with respect to the unique G-invariant measure class on G/H 
and (Ad AGIH(g)f)(goH) zff(g--’goH), g, go€ G, f~ %(G/H). 

Due to theorem 1 it is sufficient to investigate ergodic integrable W* systems whose 
underlying W* algebra is a factor. The W* algebra A of an integrable ergodic W* 
system can be regarded as composed of a purely classical system (with W* algebra 
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.Ym(G/H)) and a purely quantum mechanical system (with W* algebra 9). For 
compact groups G theorem 1 was proved in [lo] (cf [15]). 

Now we have the following theorem ([22], theorem 111.3). 

Theorem 2. Let (A, G, a) be an integrable ergodic W* system. Then there exist a W* 
system ( N ,  G, p ) ,  a normal isomorphism T : Tm(G) + K of .Ym(G) into K with p, 0 T = 
. rroAdh(g),  g E G ,  and an atomic projection p in the fixed point algebra K 9  = 
{ y  E N l P , ( y )  = y ,  V g  E GI, such that (4  G, a) = (PA?, G, Plp.~p) and n(=%(G)) is 
maximal commutative in N, i.e. .rr(T=(G))’fl N =  v(.Ym(G)). 

The original W* system ( A , G ,  a) is determined by the auxiliary system ( N , G , p ) .  
The latter can be investigated by using the duality theory of W* systems [25]. The 
covariant representation .rr, for exapple, gives rise to an ergodic coaction of G on .No 
such that ( N ,  G, p )  = (XPx,G, G, S), where XPx8G is the crossed product of K P  by 
G with respect to S and 8 is the dual action of 6 (cf [25]). For Abelian groups G the 
above result can be used to develop a complete structure theory ([2], ch 111.4). 

Next consider the following theorem ([16] and [22], theorem 111.6). 

Theorem 3. Let (A, G, a) be a faithful ergodic W* system of the (LCS) Abelian group 
G (i.e. a,= Id implies g = e ,  where e is the unit element of G). Then ( A , G ,  a) is 
integrable if and only if for every element y of the dual group 6 there exists a unitary 
U, with 

tEG,  y ~ 6 .  

Here ( * ,  a ) :  6 x G + 9 = ( 2  E CI 121 = 1) denotes the dual pairing between 6 and G. The 
unitaries U,, y E 6, are called eigenoperators of a. 

a,(u,)  = (7 ,  t )u,  

6 3 y -+ uy E A :an6 be regarded as a (Borel) ray representation with 2-cocycle 
(multiplier) U : G x G + 9: 

U,, U,? = d Y l ,  Y2)uy,y* Y I ,  Y I ,  Y2E 6. 
2-cocycles uir i = 1,2, are called equivalent, uI - u2, if there exists a (Borel) function 
d :  6-+ 9 with 

UI(YI,  Y2) = d ( y , )  d(y2) d(YlY2)*~2(YI, Y2) Y l ,  Y 2 E  6. 
The set of 2-cocycles modulo the equivalence relation - is a group, the second 
cohomology group H 2 ( 6 ,  9). 

Now consider the following theorem ([16] and [22], theorem 111.5). 

Theorem 4. Let G be a (LCS) Abelian group. Then for every G E  H’(6, 9) there exists 
(up to isomorphism) exactly one integrable ergodic W* system (A, G, a) with 
eigenoperators {u,ly E e}, such that an associated 2-cocycle lies in C. In particular, 
the W* algebra A is generated by the unitaries {u,ly E 6}. 

Remark. The results of the following theorem ([22], theorem 111.7) are well known 
for compact Abelian groups [ 10,111. 
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Theorem 5 .  Let (.U, G, a) be a faithful integrable ergodic W* system of the (LCS) 

Abelian group G and (T : 6 x 6 + 9 be an associated (Borel) 2-cocycle. Then 

d Y 0 ,  Y ) *  ‘ 4% Y o )  = ( Y o ,  ‘ ( Y ) )  Y,  Y o €  6 
defines a continuous group homomorphism L : 6 + G, such that 

7 

(i) A is of type I ~ i ( 6 )  = i(G), i.e. i(6) is closed 
(ii) A is a f a c t o r e i ( G ) = G  
(iii) A is f i n i t e e i ( G )  is compact. 

.r 

7 

Furthermore, the factor 9 in the tensor product decomposition A = Lfm(G/H)@ 9 (cf 
theorem 1) is always semifinite and  injective. In particular, if 9 is not of type I (i.e. 
not isomorphic to an  algebra %(X) for a suitable Hilbert space X), it is either 
isomorphic to the unique injective type 11, factor or isomorphic to the unique injective 
type 11, factor (cf [26]). 

Example. Consider G = R2. Every 2-cocycle of k2 = R2 is of the form 

cC,((to, so), ( t ,  s)) = e x p M t o s  - s o t ) }  tor so, t ,  s E 

for a suitable number c E R ([27], theorem 5.4). For the associated group homomorph- 
ism i : i i 2 + ~ ’  one gets 

1 ( t , s )=2c ( - t , s )  t , S E R .  

Thus either m= ‘(k2) = R2 (if c # 0) or ‘(k2) = (0,O). For c # 0 one gets the well 
known type I factor systems (which correspond to an  irreducible ray representation 
of the Weyl relations), for c = 0 the commutative W* system (Lfm(R2), R2, Ad A ) .  The 
former correspond to the simplest version of quantum mechanics, the latter to the 
simplest version of a classical theory. Note that these results generalise von Neumann’s 
uniqueness theorem ([7], theorem VIII.14). 

Now consider the following theorem ( [ 2 2 ] ,  lemma 111.5). 

Theorem 6. Let (A, G, a) be an  integrable ergodic W* system, where A is a type I 
factor, and consider an  auxiliary system (X,  G, p )  (theorem 2 )  with the covariant 
representation r : Z m ( G ) + X .  Then there exist unitaries n ( g ) ,  g EG,  in X p  with the 
property 

n(g)r(f)n(g)* = r ( A d  p(g)f) SE ZAG) ,  g E. G .  
The unitaries n ( g ) ,  g E G, are determined uniquely up  to a complex number of 

modulus 1 (this is due to the maximal commutativity of r ( T m ( G ) )  in X ) .  They form 
a ray representation G 3 g + n ( g )  E X p  with a 2-cocycle c : G x G + 9. The equivalence 
class ?E H2(G, 9) of c specifies completely the auxiliary system (X ,  G, p )  (see [22], 
ch 111.5, and [21]). For more information about integrable ergodic actions on type I 
factors, see [21]. The converse of theorem 6 is as follows. 

Theorem 7. Let (A, G, a) be an  integrable ergodic W* system with A a factor and  
consider au  auxiliary system ( N ,  G ,  p )  (theorem 2) with the covariant representation 
r : L f m ( G ) + X .  Suppose there exist unitaries n ( g ) ,  gEG, in X p  with the property 

Then X and consequently Jcc are W* algebras of type I ,  i.e. isomorphic to a(%) 
n ( g ) d f ) n k ) *  = d A d  p(g)f), S E  Za?(G), g E G. 

for a suitable Hilbert space X. 
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Pro05 The theorem follows essentially from ([28], theorem 6) .  To make use of the 
latter, one has to show that the mapping G 3 g + n ( g )  E N P  can be considered as Bore1 
measurable. This follows from our separability assumptions (G second coutable, the 
predual of A separable) by standard techniques. 

Consider an integrable ergodic W* system (A, G, a), where A is a factor, and an 
associated auxiliary system ( N ,  G, p )  (theorem 2) with covariant representation 
T :  Zm(G) + N. Let U ( N P )  denote the unitaries of N p  and define 

S z { g E  G13n(g) E U ( N P )  with n ( g ) T ( f ) n ( g ) *  = r ( A d  p ( g ) f ) , f E  Zm(G)}. 

Then S is a subgroup of G. 

Conjecture 1 .  S is a dense normal subgroup of G. 

Conjecture? is true for W* systems (A, G, a )  where G is Abelian: in fact S is then 
given as L(G)  (cf [22], ch 111.4 and see theorem 5(ii)). It is furthermore true for W* 
systems (A, G, a )  where the factor A is of type I. In this case, even S = G holds 
(theorem 6 ) .  S = G is even characteristic for type I systems (theorem 7). 

Conjecture 2. Let (A, G, a) be an integrable ergodic W* system, where A is a factor 
and G is a simple group, i.e. it does not admit normal subgroups besides G itself and 
the trivial subgroup { e }  formed by the unit element e. Then Ju is of type I .  

Conjecture 2 is an immediate consequence of conjecture 1. I t  would generalise the 
result of Wassermann [29], which asserts that the rotation group SO(3) cannot act 
ergodically on type 11, factors. 
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